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A general method for constructing finite difference schemes for long- 
time integration problems is presented. It is demonstrated for discretiza- 
tions of first and second space derivatives; however, the approach is not 
limited to these cases. The schemes are constructed so as to minimize 
the global truncation error, taking into account the initial data. The 
resulting second-order compact schemes can be used for integration 
times fourfold or more longer than previously studied schemes with 
similar computational complexity. A similar approach was used to 
obtain improved integration schemes. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

The simulation of hyperbolic partial differential equa- 
tions often requires long-time integration. The physical 
phenomena described by these equations typically possess a 
range of space and time scales; turbulent fluid flow is a com- 
mon example. Accurate numerical simulation of this type of 
process requires proper representation of all the relevant 
physical scales in the numerical model. These requirements 
led recently to new interest in Pad6 approximations also 
known as compact finite difference schemes [ 7 ]. 

Compact finite difference schemes had long been known 
and used in numerical analysis [ 1-3 ]. They offer a means 
of obtaining high order approximations to differential 
operators using narrow stencils. This is achieved by treating 
the sought derivatives as unknowns and solving a system of 
equations for them. Typically, the resulting matrices are 
tridiagonal or pentadiagonal and can be efficiently solved. 
A detailed exposition of compact schemes and derivation 
techniques can be found in [ 12] and will not be pursued 
here. 

In [7] a class of highly accurate compact schemes for 
first, second, and higher derivatives were presented and 
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analyzed. A notion of resolving efficiency was introduced to 
measure the accuracy of the finite difference approximation 
of the exact solution over the full range of length scales 
realizable on a given grid. This criterion was then used to 
compare various schemes and motivated the design of a new 
class of schemes, the so-called schemes with spectral-like 
resolution. These are fourth-order pentadiagonal systems 
with seven-point stencils. Their improved resolution charac- 
teristics were obtained by giving up on high formal 
accuracy, instead requiring that the symbol of the discrete 
difference operator should agree with the differential 
operator at three prescribed high frequencies. These fourth- 
order schemes had better resolution than tenth-order 
schemes (the highest order obtainable) with the same com- 
putational complexity. 

A more adequate measure for evaluating finite difference 
schemes is the L2 norm of the local truncation error. This 
measure which takes into account the Fourier components 
present in the solution and their amplitude was used in [ 9 ] 
to design explicit time marching schemes (i.e., discretizing 
time and space simultaneously) by analytically solving 
constrained minimization problems with quadratic cost. 
This approach has several limitations which severely restrict 
its usability. The simultaneous treatment of time and space 
discretizations yields very complex optimization problems. 
A generalization of this approach to equations in higher 
dimensions yields large nonlinear constrained minimization 
problems which are difficult to solve. It, also, seems inade- 
quate to design compact schemes. These difficulties and the 
use of analytic, rather than numerical, methods makes the 
suggested approach impractical. 

The use of the L2 norm to evaluate the global truncation 
error and its application to find an optimal discretization 
from a one-parameter family of compact schemes can be 
found in [ 12 ]. 

In [4] a heuristic derivation was done by minimizing the 
weighted error (in the Fourier space) of the discrete and 
continuous operators. 

The present paper focuses on the construction of finite 
difference schemes that minimize the discretization error as 
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in [9], but with several important differences. First, 
improved bounds on the truncation error were derived. 
These enabled us to treat time and space discretizations 
separately. Specifically, first the space operator is dis- 
cretized; then a stable time marching scheme is optimized 
for this discretization. This reduces the minimization 
problem to two lower dimensional problems that are 
significantly easier to solve. Further simplification is 
obtained by optimizing each partial derivative separately, 
rather than approximating the whole differential operator 
as was done in [ 9 ]. These reductions of problem complexity 
resulted in a simple and general approach to synthesis of 
discretization schemes. It enabled us to design highly 
accurate compact difference schemes and integration for- 
mulas for various operators and initial data. The resulting 
second-order approximations proved to be robust to per- 
turbations in the spectrum of the initial data, exhibiting 
resolution superior to other known schemes of formally 
higher order. In particular, we show that the notion of 
resolving efficiency [ 7 ] is too crude a measure as it assumes 
that all frequencies occur with similar amplitude in the 
initial data. 

It should be emphasized that when considering a refine- 
ment process where the mesh size Ax--,  O, higher order 
schemes are superior asymptotically. However, for any 
finite mesh size and given the initial data, there exists a 
scheme (of the type constructed in this paper) of lower 
formal accuracy with superior accuracy on that grid for an 
appropriate initial data set. 

The organization of the paper is as follows. In Section 2, 
Fourier analysis is used to obtain bounds on the truncation 
error. In Section 3, approximations to derivatives are 
presented, for the first and second derivatives and first 
derivative at mid-cell points. Tables I-III  list coefficients for 
these derivatives for various stencils and initial conditions. 
Improved time integration schemes are developed in Sec- 
tion 4, and their coefficients are listed in Table IV. Section 5 
discusses generalization of the present approach to more 
complex problems. Numerical results are presented in 
Section 6. Concluding remarks are made in Section 7. 

2. BOUNDS ON THE TRUNCATION ERROR 

The application of Fourier analysis for the design and 
evaluation of finite difference schemes can be found in many 
sources, e.g., [9, 10]. A comprehensive discussion on the 
use of Fourier analysis in the numerical approximation of 
hyperbolic problems can be found in [ 12]. 

In the following section bounds on the L 2 norm of the 
error in the discrete solution are derived, accounting for the 
effect of discretization both in space and time. These 
estimates are used in subsequent sections to design schemes 
with improved accuracy on a given grid. 

Consider a linear constant coefficient scalar partial dif- 
ferential equation with periodic boundary conditions of the 
form: 

~ u  
- -  = L u  (2.1) 
at 

u(x, O) = Uo(X). (2.2) 

Further assume that there exist constants C > 0, 0t such that 

Ilu(t)H ~ f e  at Ilu(0)ll, t i> 0. (2.3) 

The discrete analog of this equation can be written as 

n + l  = P(h, At) u~. (2.4) Uh 

u ° = Uo, (2.5) 

where h is the mesh size in space, and P(h, At) is a stable 
finite difference approximation. 

We would like to bound the L 2 norm of the error in the 
discrete solution, for the initial value Uo, given by 

e2(n At; Uo) = Ilu(n At) - u ~  II 2 

= IleL" ~'Uo - P"(A, At) u 0 II 2. (2.6) 

We will use in the rest of section t, instead of n At, to sim- 
plify notation. The Fourier transform of Eq. (2.6) yields 

f=/h le L(°~h)t- P"(coh)l 2 lao(coh)l 2 do) (2.7) 
- -  ~r/h 

f.nlh ] eL(~°h)t  eLh(°~h)t[ 

./h( 
+ [e Lh(°~h)t- P"(~oh)l)2 lao(o~h)l 2 dco, (2.8) 

w h e r e  L h is the discrete operator approximating L, and £, 
£h are their corresponding symbols. Thus, the space and 
time discretization errors can be bounded separately. 

Denote ]~(ogh)=£R(Ogh)+£i(ogh) for the real and 
imaginary parts of £(o9h), respectively; and use a similar 
decomposition for £h(ogh). Then 

e E  ( o~h ) t _ eLh( o~h ) t 

= eE(O~h)t( 1 - e (L~(°~h) - £1(o~h)),e(L~(o,h) - ~R(O,h))~). (2.9) 

The assumption on the growth rate of the solution in time 
implies that 

le~(°~h)'[ ~ f e  a', t >>. O. (2.10) 
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Assume that the discretization is stable, i.e., satisfies a 
similar bound, 

[e£h(~°mt[ <~ Ce ~', t ~ O, (2.11) 

Hence, 

CTe ~r 
le Lh(~°h)' - P"(coh)l ~ - -  e ch(°~h) ,t, _ P(e)h)[. 

At (2.20) 

for the same C and 0~. The assumption that the differential 
and discrete solutions are bounded by the same function is 
not restrictive as one can take the larger bound. 

For real numbers 0, ~ with y < 0 ,  simple geometric 
considerations yield the bound 

II-e~°eYl ~< [0[ + I I - e r l .  (2.12) 

Combining bounds (2.10) and (2.12) and assuming that 
£hR(ogh) -- £R(COh) < 0 results in 

I e~('°h~' -- eL~(°'h)'l ~< Ce~'[ ]£ih(ogh) -- £i(coh)l t 

+ 11 --e(~('°m-£R(°~m)t[] (2.13) 

<~ Ce~'[ [£ih(coh) -- £i(o9h)1 t 

+ [£h(coh)--£R(Ogh)[ t]. (2.14) 

Denote by ~(t; Uo) the error due to time discretization only, 
when the initial value is Uo. For a final time T, the bound 
(2.20) implies that 

( C T e ~ T ~ 2  f n/h ]elLh(coh) Llt l r ( foh)12  e2( T, Uo) <~ \ ~ j ~ ,/h 

× [ao(coh)[ z &o. (2.21) 

Combining these estimates yields a bound on the L 2 norm 
of the global truncation error: 

e2'Z; u°)~(CZeeZT)2 f~/r~;h ( [- ]£h(('Oh) - £I((-°h)[ 

+ [£~(coh)- £R(coh)[ ] z 

If £h(coh) -  £R(COh)> 0, this bound can be obtained using 
the same argument when factoring e ~h(°~h)' in (2.9). 

Denote by ~(t; Uo) the error due to spatial discretization 
only, when the initial data is u 0. For a final time T, using 
(2.14) yields 

o2(r; Uo)~< ( C T e ~ )  ~ ~-./~ (l£,~(~oh)- £,(coh)l 

+ I£hR(Ogh) -- £R(Ogh)l )2 lao(coh)l z dog. (2.15) 

Therefore, a difference scheme minimizing the integral 
(2.15) for a given initial value u o will better resolve, in the L 2 
norm, the frequencies occurring in the solution. 

A similar argument is made with respect to the time 
integration operator. Consider the difference, 

elSh(o~h)n ztt _ pn(ogh ) = ( eEh(oJh) at - -  P(coh ) ) 

n--1 
x ~, eLh('°h)JZtP"--l--J(ogh). (2.16) 

j= l  

q- [ -~  le£h(~°h) At--15( o)h )[ ] 2) [ao(o)h)[2.de). 

(2.22) 

In order to minimize the global error in the numerical 
solution one should use schemes with the least L 2 error 
bounds. A simple technique to design such schemes consists 
of the following two steps. First solve the minimization 
problem, 

~ n/h 
min ([£ih(coh)- £i(o9h)1 

+ I£hR(COh) -- £R(COh)[)2 lao(coh)l 2 dog, (2.23) 

where ~¢ is a class of finite difference operators considered, 
e.g., compact schemes with at least second-order formal 
accuracy. Let Lh. denote the optimal discretization found in 
this stage. 

Next, solve the minimization problem 

Under the previous assumptions 

le~h~'h~ A'l <~ Ce ~A' 

IP(coh)l ~< Ce =~t. 

Therefore, 

n - 1 - J ( c o h )  ~= elLh(o~h ) j Att~n -- 1 ~ nCe~r. 
j 1 

(2.17) 

(2.18) 

(2.19) 

f~lh [egh.(o~h) at min - P(ogh)] 2 I•0(coh)l 2 do, (2.24) 
ph ~ ~ -- nlh 

where ~ is a class of stable time marching schemes and P 
depends on Lh.. 

The spatial operator is optimized over a parameterized 
family of finite difference schemes which approximates a 
derivative appearing in the differential operator. Those 
parameters are used to obtain the desired formal accuracy, 
by imposing algebraic relations on them and thus reducing 
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the problem dimensionality, while the remaining 
parameters are used to minimize the error (2.15), by solving 
a quadratic minimization problem. 

The same approach may be utilized to design schemes 
with other particular properties by either modifying the cost 
function or imposing constraints on the resulting scheme; 
however, these possibilities will not be pursued here. 

The basic observation that the global error is determined 
by the L 2 norm of the truncation error rather than by the 
formal accuracy of the scheme implies that one should 
impose the least order of accuracy required for the scheme 
consistency. Thus, more parameters may be used to achieve 
improved performances. 

In the present work compact schemes were investigated 
since they provide a large number of parameters while 
maintaining narrow stencils. 

The design of the time marching operator is similar to the 
derivation of the space operator. The basic approach 
remains to minimize the L 2 norm (2.21), where £h is 
the already designed spatial discretization, over a 
parameterized family of schemes. Some of the parameters 
will be used to enforce the order of accuracy, while mini- 
mizing over the free ones will yield the desired performance. 
The stability of the fully discrete operator is accomplished 
by adding to this minimization problem a constraint that 
for a prescribed CFL number, the scheme should be stable; 
then looking for the maximal CFL possible. According to 
the previous observations it seems reasonable to require 
only low-order accuracy and use the remaining parameters 
for other purposes. 

At this stage one might discover that the spatial operator 
discretization allows only very small CFL numbers, yielding 
the computation inefficient. Therefore, it is necessary to 
redesign the space operator by adding a constraint which 
will prohibit such behavior. Thus, although the time and 
space discretizations are performed separately a close 
feedback should be maintained between the two design 
processes. 

simultaneously. Thus, unlike in finite difference approxima- 
tions, the derivative at node i depends on function values at 
all other nodes. 

Following [ 7 ] we use approximations of the form: 

flf'i_ 2 + o~f ; _ , + f ~ ÷ ocfti + l ÷ ~fti + 2 

f ~ + 3 - f ~ - 3 + b f ~ + z - f ~ - 2 +  f " + ' - f ~  ' (3.1) 
-- c 6h 4h a 2h 

A second-order approximation can be obtained by adding a 
constraint that the Taylor expansion on both sides should 
agree up to the second-order term, i.e., 

a + b + c = l + 2 ~ + 2 f l .  (3.2) 

Higher order schemes may be obtained by further matching 
the next terms in the expansion [7]. However, in this 
paper merely second-order accuracy is enforced, and the 
remaining free parameters are chosen so as to improve the 
accuracy on a given grid. 

The symbol of the differentiation operator is given by 

£(coh) = ia~h, (3.3) 

whereas the symbol of the discrete approximation (3.1) is 

£ h ( o ) h  ) = i 
a sin(oh) + (b/2) sin(2~oh) + (c/3) sin(3coh) 

1 + 2c~ cos(coh) + 2fl cos(2~oh) 

(3.4) 

In view of the bound (2.15 ), define the following constrained 
minimization problem whose solution should yield a com- 
pact scheme with improved resolution properties, 

~ g/h 
min I£h(o~h) - £(coh)[ 2 [fio(~oh)[ 2 dog, 

a,b ,c ,  ot, fl " -  r~/h 
(3.5) 

under the constraint 

3. APPROXIMATING SPATIAL DERIVATIVES a + b + c = l + 2 ~ + 2 f l ,  (3.6) 

3.1. Approximat ion of  the First Derivative 

Consider a uniformly spaced mesh whose nodes are 
indexed by i and its mesh size is given by h = 1/N, where 
N + 1 is the number of grid points. The variable at node i is 
x i =  ih and the function value at the nodes, f , . = f ( x i ) ,  are 
given for O<~i<~N. An approximation f /  to the first 
derivative (d f /dx ) (x i )  should be computed as a linear com- 
bination of the function values at neighboring grid points. 
Compact finite difference schemes regard the approxima- 
tion f~ as unknown and a system of equations is solved 
to approximate the first derivative at all nodes, 

where £(coh) and £h(ogh) are given by (3.3) and (3.4), 
respectively. 

Although the problem was formulated as a constrained 
minimization problem, it can be transformed by substitu- 
tion to an unconstrained minimization problem over a 
reduced set of parameters. Moreover, setting some of the 
parameters to zero further reduces the problem dimen- 
sionality. Since tridiagonal systems of equations are more 
amenable to numerical solution than pentadiagonal ones, 
setting fl = 0 seems a plausible choice. Similar considera- 
tions might suggest using a narrower stencil obtained by 
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setting c = 0, as well. All those possibilities are presented in 
Section 6, and several sets of coefficients for different initial 
data are listed in Table I.. 

The second order of the approximation is guaranteed by 
condition (3.2). 

The symbol of the differentiation operator is 

3.2. Approximation of  the Second Derivative 

The derivation of compact schemes for the second 
derivative proceeds in an analogous way to the first 
derivative. The starting point is an approximation of the 
form 

flf"- 2 + ° f  ;'- x + f ;' + af'[ + , + flf,"+ 2 

f / +  3 - -  2f/-1- f / -  3 t_ bL+ 2 - 2f,. +.fg_2 
c 9h 2 4h z 

+ a f i + l - - 2 f i +  fg-a 
h2 , (3.7) 

where f~' is the approximation to the second derivative at 
node i. Matching the Taylor series coefficients on both sides 
of (3.7) yields condition (3.2) for the second-order accuracy. 

The symbol of the second derivative is given by 

£(coh) = -- o.)2h 2. (3.8) 

The symbol of the discrete approximation (3.7) is 

£h(ooh) = -- [2a(cos(~oh) -- 1 ) + (b/2)(cos(2ogh) - 1 ) 

+ (9c/2)(cos(3coh)- 1 )]/ 

[l + 2c~cos(ogh)+ 2flcos(2~oh)]. (3.9) 

The constrained minimization problem whose solution is 
the sought scheme can be formulated as 

. f ~ / h  
mln / I£h(coh)- L(a~h)l 2 Ifio(coh)l 2 do9 (3.10) 

a,b,c, cqfl a zr/h 

under the constraint 

a + b + c =  1 + 20~+ 2ft. (3.11) 

Now, however, £(o9h) and £h(ooh) are given by (3.8) and 
(3.9), respectively. 

3.3. Approximating the First Derivative on 
a Cell-Centered Mesh 

The approximation of the first derivative at the cell- 
centered mesh is 

' o~ ' " + f ; + o ~ f ' g + l " - k f l f ' g + 2  f l f  g -  2-{- f i - 1  

fg+s/E-fi-5/2 bf ,+3/2-f i -3/2 = C  "}- 
5h 3h 

+ af /+  1/2 - - f i -  1/2. 
h 

(3.12) 

£(o9h) = iogh (3.13) 

while the symbol of the discrete approximation (3.12) is 

£h(ooh) = i [2~ sin(o~h/2) + (2b/3) sin(3a~h/2) 

+ (2c/5) sin(5~oh/2)]/ 

[l  + 2~cos(a~h)+ 2flcos(2ooh)]. (3.14) 

A constrained minimization problem of the same type as in 
the previous sections was formulated and solved for these 
symbols. 

4. APPROXIMATION OF THE 
INTEGRATION OPERATOR 

The design of integration schemes is substantially limited 
by the stability requirement which renders high order 
schemes computationally costly. Therefore, efforts have 
been made to obtain schemes of lower order with improved 
characteristics.. Within this approach, the free variables in 
the Runge-Kutta schemes were set to yield better trunca- 
tion error [ 5 ] or extended stability region [ 6 ]. The idea of 
giving up on formal accuracy in order to obtain better 
approximation of the wavenumbers relevant to the problem 
solved may be viewed as a generalization of these ideas. 

The discrete time integration of linear constant coefficient 
partial differential equation 

~U 
- - = L u  (4.1) 
~t 

amounts to approximation of the exact discrete solution 
eLh'Uo . Therefore, the integration scheme may be written as 

P.(L h At) = ~ ag(L h At) i, (4.2) 
i=O 

where ag may depend o n  L h. The order of the integration 
scheme is determined by the number of first terms ag which 
agrees with the Taylor expansion of e x. 

The derivation of the integration schemes is similar to 
that of spatial derivative discretization; i.e., a constrained 
quadratic optimization problem is formulated based on the 
error estimate (2.21). The solution of this minimization 
problem yields an improved integration scheme. However, 
the derivation of integration schemes is more involved than 
the generation of compact spatial discretization schemes 
since the stability condition leads to a nonlinearly con- 
strained minimization problem. 
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Following (2.21), the next optimization problem is 
defined as 

~/h [e£ht~°n~'--P,(£h(ogh) Atl 2 lUo(O~h)l ad°9, (4.3) m i n  ~/h 
a i _ 

subject to the constraints 

ai=l/i!, O<~i<~p, (4.4) 

[Pn(£h(ogh ) At)12 <<. l, (4.5) ~ o e  - n ' =  ' 

where L h is a discrete approximation of L and p is the order 
of the n stage formula. Condition (4.4) can be treated by 
substitution, but the stability condition requires an explicit 
treatment. 

In accordance with our general approach, we argue that 
second-order formal accuracy suffices. It remains to deter- 
mine the number of stages in the integration formula. This 
should be chosen to assure that the error in space and time 
discretizations (2.15) and (2.21), respectively, will be of 
similar magnitude. In the present work, five stage schemes 
of second order were investigated, i.e., n = 5 and p = 2. 
Integration formulas were obtained for optimized seven- 
point tridiagonal compact schemes approximating the first 
derivative and were tested for the advection equation in one 
and two space dimensions. 

An important feature of the present appraoch is that once 
a feasible minimum has been found for a prescribed initial 
value and a given CFL number, the resulting scheme will be 
stable for this data. This might enable the use of somewhat 
larger time steps. 

5. APPROXIMATION OF DIFFERENTIAL OPERATORS 

The method introduced in the previous sections for 
generating optimal finite difference approximations for 
derivatives and time integration schemes for one-dimen- 
sional scalar linear constant coefficient equations can be 
extended to more general cases. In this section, a few 
straightforward and robust generalizations will be pre- 
sented. The guiding principle was to maintain simplicity of 
application, even at the cost of losing some of the attainable 
accuracy. Clearly, there are other generalizations, and the 
trade-off between accuracy versus simplicity and robustness 
should be carefully investigated. Nevertheless, our numeri- 
cal experiments (see Section 6) demonstrate that the ideas 
presented here yield significant improvements to previously 
studied schemes. 

The error bounds derived in Section 2 can be generalized 
for d-dimensional problems; noting that the same proof 
holds for the d-dimensional case when changing the integra- 

tion over [ - n / h ,  n/h] to multi-integration over the box 
[ -n /h ,  n/h] d. This suggests that approximation of the 
differential equation should be obtained by solving con- 
strained optimization problems in d-dimensional Fourier 
space for a large set of parameters. For some equations, 
solving this large minimization problem might be essential 
to achieve accurate schemes. Quite often, though, a set 
of simpler minimization problems can be obtained by 
optimizing each partial derivative separately, resulting in 
highly accurate approximations. 

An approach which was successfully tested in the present 
paper, divides the optimization process into two stages. 
First, a set of schemes are designed for a large enough 
variety of typical initial data (e.g., Gaussians with different 
parameters, in our examples). Once this precomputation is 
performed its results are saved to be used in subsequent 
simulations. In the actual simulation, the Fourier transform 
do of the initial data u 0 is computed. This Do should be used 
to design the optimal space and time discrete operators, by 
solving the corresponding optimization problems. Alter- 
natively, we suggest choosing, from the previously designed 
schemes, one corresponding to the initial data which best 
approximates Do. A further simplification can be obtained if 
D 0 is approximated by a product of two Gaussians. This 
construction might introduce larger errors, but it is very 
simple and seems to yield substantial improvement over the 
standard schemes. Thus, the discretization of the partial 
derivatives is determined by approximating D o as a product 
of one-dimensional functions (one-dimensional Gaussians, 
in our examples) for which optimized schemes were 
designed. Each partial derivative is discretized using the 
corresponding one-dimensional optimized scheme. The 
time marching scheme is selected from the set of schemes 
corresponding to the approximating one-dimensional func- 
tions. In the present work, the selection was done by com- 
puting the L2 error norm of each candidate integration 
scheme when applied to the approximate initial data with 
the already determined discretizations, then selecting the 
scheme which yields the minimum error norm. This com- 
putation, too, can be done prior to the actual simulation for 
a large set of typical initial data. Thus, the marching scheme 
selection can be done by looking up in a precomputed table. 
The robustness of the proposed schemes to perturbations in 
the initial data yields this optimization very efficient, as can 
be seen in the numerical results presented in Section 6. It 
should be noted that the time required to obtain an 
appropriate scheme using this approach is negligible 
relative to simulation time. 

When the frequencies present in the solution change with 
time, e.g., due to a time dependent source term, the com- 
putation of the optimized schemes should be repeated, once 
a large cumulative change has occurred. Still, the relative 
cost of this computation is minimal. 

The Fourier transform gives the energy content of the 



FINITE DIFFERENCE SCHEMES 271 

whole initial data. It may occur that the initial data is 
smooth at some regions of the computational domain and 
oscillatory in others, in which case the designed approxima- 
tion will give good performance over the whole domain. 
One can do better by computing a different scheme for each 
region and using a smooth weighted sum of the resulting 
schemes near region boundaries. This requires computing 
the Fourier transform locally in each region. The localiza- 
tion to a particular region can be achieved by multiplying ~0 
by a C °~ function with a compact support which encloses 
the region. 

In some cases, systems of equations may be treated in a 
similar way. Let us first look at a one-dimensional first- 
order system, 

U t -~- ~4U x 
(5.6) 

u(x, O) = Uo(X), 

where A is a p xp symmetric matrix. Let A = P - l a p  be a 
diagonal matrix and denote v = Pu. The discretization of the 
system 

1) t ~ Avx 
(5.7) 

v(x, O) = Puo(x) 

can be done in an analogous way to the scalar case, except 
for the time marching scheme which should be chosen from 
a set of candidate schemes (as for the multidimensional 
scalar equations). Thus, highly accurate discretization of the 
system (5.6) can be achieved by first discretizing (5.7) and 
using the identity ux = P-lvx. For systems in higher dimen- 
sions, 

~u 
U t =  A i ~ x  i 

i = l  

u(x, O) = Uo(X), 
(5.8) 

we require that all A i be symmetric and simultaneously 
diagonalizable. For this case the proof in Section 2 applies 
and one obtains a similar error estimate. 

The proposed schemes might be useful for nonlinear 
equations, as well. There, one should design the schemes for 
the linearized equation and will be obliged to modify them, 
once a large change in the amplitude of the wavenumbers 
appearing in the solution occurs. 

6. NUMERICAL RESULTS 

The numerical examples in the following section clearly 
demonstrate the accuracy and robustness of the proposed 
schemes. The spatial discretizations are compared to those 

presented in [ 7 ], where the same families of parameterized 
schemes were investigated. In particular, our second-order 
pentadiagonal seven-point stencil scheme is compared 
to the fourth-order spectral-like scheme with the same 
computational complexity, which was shown [ 7] to have 
resolution superior to the tenth-order scheme having the 
same structure. 

The accuracy of our approximations is demonstrated by 
applying the optimized scheme to the initial data that it was 
designed to best approximate, comparing the results to the 
exact solution and the solution obtained by using a spcetral- 
like scheme. First, all solutions are integrated until the error 
in the solution approximated with the spectral-like scheme 
is visible. Typically at this stage the solution discretized with 
the optimized scheme is almost indistinguishable from the 
exact solution. This gives a rough estimate on the time that 
the spectral-like scheme could be efficiently used. Next, the 
solutions are further integrated, until an error of similar 
magnitude prevails in the solution approximated with the 
optimized scheme. Typically by now, the solution corre- 
sponding to the other scheme greatly differs from the exact 
solution. The time that this occurs is an order of magnitude 
larger than the spectral-like scheme effectiveness time. Thus, 
we may conclude that the optimized schemes may be used 
for integration times an order of magnitude longer than 
spectral-like schemes with similar computational com- 
plexity. 

The robustness of an optimized scheme is shown by using 
it with initial data different from those it was designed to 
approximate. In these examples the solutions are integrated 
until a visible error appears in the solution corresponding 
to the optimized scheme. At this time the solution corre- 
sponding to the spectral-like scheme bears only a little 
similarity to the exact solution. 

Although these comparisons are not quantitatively 
precise, the resulting qualitative conclusions are surely 
valid. The accuracy and robustness of the time marching 
schemes is demonstrated by examples that are similarly con- 
structed, where the optimized fully discrete scheme is com- 
pared with a tridiagonal example with the same stencil size 
using fourth-order Runge-Kutta. The last two-dimensional 
example with variable coefficients demonstrates the robust- 
ness of the schemes and the applicability of the generaliza- 
tion to higher dimensions as suggested in Section 5. 

6.1. Approximation of Derivatives 

The constrained minimization problem (3.5) for the space 
discretization can be easily solved by substitution using 
(3.2). Differentiation of the resulting quadratic form 
provides a set of necessary conditions holding at the 
minimum. This nonlinear system can be solved using the 
Newton method, yielding a local minimum. Since the 
schemes obtained using this process significantly improve 
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T A B L E  I 

Coeff ic ients  o f  F i rs t  D e r i v a t i v e  A p p r o x i m a t i o n s  for  V a r i o u s  Ini t ia l  C o n d i t i o n s  

Uo Schemes with f l=c=O 

e -~2 ~=0.3793894912, a=1.575573790,  b=0.1832051925 
e -2~2 ~=0.3534620435, a=1.566965775, b=0.1399583152 
e -3~2 a=0.3461890571, a=1.5633098070, b=0.1290683071 
e -4~2 ~=0.3427812069, a=1.5614141543, b=0.124148259 
e -5°'2 ~=0.3408027739, a =  1.5602604992, b=0.121345048 
e 6 J  ~=0.3395099051, a =  1.5594855939, b=0.119534216 
e -7w2 ~=0.3385987444, a =  1.5589295176, b=0.1182679712 

~0 Schemes with fl = 0 

e -~2 ~=0.4303030674, a=1.5567577428, b=0.3451622238, 
e -2~2 ~=0.3991476265, a=1.5636386371, b=0.2563784492, 
e -3°'2 ~=0.3904091387, a=1.5638887738, b=0.2348222711, 
e -4~2 ~=0.3863287472, a=1.5637497712, b=0.2252138483, 
e -5~2 ~=0.3839604005, a=1.5635937780, b =0.21976694619, 
e -6~2 ~=0.3824122042, a=1.5634617985, b =0.21625718276, 
e -7~2 ~=0.3813206436, a=1.5633544597, b=0.21380659696, 

~o General schemes 

c = - 0 . 0 4 1 3 1 3 8 3 1 7  
c = - 0 . 0 2 1 7 2 1 8 3 3 4  
c = -0.0178927675 
c = -0.0163061252 
c = -0.0154399233 
c = - 0 . 0 1 4 8 9 4 5 7 9 4  
c = -0.0145197694 

e -~2 ~=0.5779403671, fl=0.0890143475, a=1.3030269541, 
e -2~2 ~=0.5801818925, fl=0.0877284887, a=1.3058941939, 
e -3~2 ~=0.5821143744, fl=0.0867224075, a=1.3086733956, 
e -4~2 ~=0.5831688320, fl=0.0862000893, a=1.3102698137, 
e -5~2 ~=0.5838221871, fl=0.0858844217, a=1.3112828763, 
e -6~2 ~=0.58426518608, fl=0.0856735831, a=1.31197935750, 
e -7°)2 ~=0.58458494112, fl=0.08552292859, a =  1.31248665912, 

b = 0.994883769, c=0.0359987066 
b = 0.9975884963, c = 0.0323380724 
b =0.9990906893, c = 0.0299094788 
b = 0.9997174262, c = 0.0287506026 
b=1.0000513827, c=0.0280789585 
b = 1.00025665126, c = 0.02764152958 
b = 1.00039487751, c=0.02733420278 

previously known schemes [ 7 ], no attempts were made to 
find the other zeroes of the nonlinear system, searching for 
better minima. 

Three types of schemes were studies: (a) tridiagonal with 
five-point stencil, i.e., fl = c = 0; (b) tridiagonal with seven- 
point stencil, i.e., fl = 0; (c) pentadiagonal with seven-point 
stencil. The initial approximation to the Newton iteration 
was, typically, a compact scheme with the same structure, 
taken from [ 7 ]. 

It can be observed, in Figs. 1 and 5, that the modulas of 
the symbol of the optimized pentadiagonal scheme for the 
first and second derivatives is larger than the modulus of 
the differential symbol. This error is larger for schemes 
generated to approximate narrower spectra. The over- 
shooting occurs in the highest end of the spectrum for 
wavenumbers not appearing in the solution. However, 
since the stability of a scheme is determined by the values 
assumed by l~h(toh) [ 11 ], this type of scheme is applicable 
only with small CFL. Moreover, the desired robustness is 
limited by this phenomenon. Therefore, this behavior of the 
approximation cannot be ignored. A possible remedy can be 
found by searching for other minimizers of the quadratic 
form. Using the tridiagonal scheme as the initial approxima- 
tion for the Newton process converged to solutions without 

this limiting property, but with reduced resolution, similar 
to the tridiagonal schemes. Other possible directions, e.g., 
further looking for other minima or penalizing in the cost 
function for this behavior were not explored. This is because 
we believe that for practical applications pentadiagonal 
systems are too costly to solve, whereas the tridiagonal 
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FIG. 1. Symbols (left) and absolute value of error (right) for d/dx. 
~0 = e-2'°2: (a) sixth-order tridiagonal scheme (fl = c = 0); (b) second-order 
optimized tridiagonal scheme ( f l = c = 0 ) ;  (c) eight-order tridiagonal 
scheme ( f l=  0); (d) second-order optimized tridiagonal scheme ( f l=0) ;  
(e) spectral-like pentadiagonal; (f) optimized pentadiagonal; (g) exact 
symbol. Schemes were optimized for u0 = e-z°'2. 
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a = 0.8: (a) . . . .  2~2 pentadxagonal scheme optmuzed for d0 = e ; (b) spectral- 
like pentadiagonal  scheme; (c) exact solution. 

schemes offer similar resolution characteristics, are easier to 
solve, and do not suffer from this deficiency. The pen- 
tadiagonal schemes are given mainly for theoretical reasons 
as a counterpart to the spectral-like approximations. 

A proper appreciation of the superiority of the proposed 
schemes can be gained by using them to integrate hyper- 
bolic equations for long times, provided the integration 
introduces only negligible numerical errors. This require- 
ment necessitates either using high order integration 
schemes or employing exact integration, as was done in the 
present work. The experiments described in the next subsec- 
tions clearly demonstrate the superior behavior of the 
proposed optimized schemes. 

6.1.1. Approximation of the First Derivative 

Compact finite difference schemes were designed and 
tested for initial data having a Fourier transform of the form 
e -~ 2  for several values of 0c In Fig. 1, the symbols of 
schemes corresponding to 0c = 2 are plotted, as well as the 
weighted error 

[£(oh) -/-~h(oh)[ [rio(oh)] (6.9) 

of the  other schemes were taken ~ o m [ 7 ] .  For scheme (a) 
the coefficients were 

c = 0  

The coefficients of scheme (c) were 

=2__5 b = ~ ,  c 0~=~, f l - 0 ,  a 16, 

(6.10) 

1 
80' 

(6.11t 

The coefficients of the spectral-like scheme (e) were 

e=0.5771439, fl=0.0896406, a =  1.3025166, 
(6.12) 

b = 0.99355, c = 0.03750245. 

It can be seen that each optimized scheme better 
approximates the differential operator than its non- 
optimized counterpart. In Fig. 1, one can observe that 
although the symbol of the spectral-like pentadiagonal 
scheme follows the differential symbol for more wavenum- 
bers than the tridiagonal scheme, the L 2 n o r m  of truncation 
error of tridiagonal scheme is somewhat smaller for this 
data. This can be explained by noting that the error of the 
tridiagonal scheme is mainly in the high frequencies while 
the spectral-like scheme has a large error at the smoother 
Fourier components, where the present initial data has 
more energy. The spectral-like scheme attains better resolu- 
tion at the expense of larger error in lower frequencies. The 
error in the optimized schemes is significantly smaller than 
in their counterparts. More precisely, computing the error 
norms reveals that the error in the tridiagonal scheme is 
about six times larger than in the optimized tridiagonal 
scheme while the error norm of the spectral-like scheme is 
about 17 times larger than in the optimized pentadiagonal. 
The plot of the absolute value of the error reveals that the 
L 2 n o r m  was used as a minimization criteria. This can be 

for the more accurate schemes. The coefficients of the 
optimized schemes can be found in Table I. The coeffÉcients 
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FIG.  3. Long-t ime integration of the equation u t = u x ,  a = 0 . 8 .  
Initial solution on the left figure was do = e ; on the right figure it 
was a o = e - 4 ° 2 :  (a) pentadiagonal  scheme optimized for a o = e - 2 J ;  
(b) spectral-like pentadiagonal  scheme; (c) exact solution. 
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FIG.  4. Integrat ion of the equation ut = Ux + u~ ,a  = 0.8 using penta- 
diagonal schemes. Initial solution was d o = e -(°~ + s£~) rotated at an angle 
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of r~/4. This data was approxxmated by unrota ted gaussian e-(~+2~2): 
(a) optimized pentadiagonal  scheme; (b) spectral-like pentadiagonal 
scheme; (c) exact solution. 
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seen from the several sign changes of the error of the 
optimized schemes, being in accordance with the averaging 
property of the chosen norm. 

Figure2 demonstrates the better resolution of the 
optimized scheme by exact integration in Fourier space on 
a 128-point grid with the pentadiagonal spectral-like 
scheme and the pentadiagonal optimized scheme, the 
equation 

OU OU 
O~ - =  0~-' (6.13) 

a = 0.8 (a being the CFL number) was used. It is shown that 
at time T =  5000, the error in the solution using the 
optimized scheme is smaller than the error at time T =  500 
when using the spectral-like scheme. This suggests that the 
optimized scheme can be used for the integration time at 
least 10 times longer than the spectral-like scheme, in close 
accordance with the ratio of the error norms. 

Figure 3 displays the scheme's robustness to perturbation 
in initial condition. The solution integrated with the 
optimized scheme far better approximates the exact solution 
than the one employing the spectral-like approximation, 
even for initial data different from the ones it was designed 

to resolve. This holds for both smoother and more 
oscillatory initial data. Although those examples do not give 
a quantitative view on the relative efficiency of the schemes 
for those initial data, one can see in both figures that, by the 
time the solution with the optimized scheme developed 
significant error, the error in the one corresponding to the 
spectral-like scheme is so large that it no longer 
approximates the exact solution. 

Figure4 shows a two-dimensional equation which 
demonstrates the robustness of the proposed schemes• In 
this example the initial data was taken to be the Gaussian 
e - (°~+s@ rotated at an angle of n/4. Then the program 

• . . 2 2 

searched for mmal data of the form e -("~°',+"~'°~), for the 
integers 1 ~< n~, n2 ~< 7, which yielded the best approxima- 
tion to the initial data. The pentadiagonal schemes 
optimized for initial data e -"~°; and e -"~°~ were then used 
to compute u~ and Uy, respectively. In this example n l = 3 
and n2 = 2. The resulting semi-discrete system was solved by 
exact integration in Fourier space on a 128 x 128 grid. The 
plot shows a cut through the solution in the x direction 
through the maximum point of the solution. While the solu- 
tion corresponding to the optimized discretization closely 
approximates the exact solution, the solution discretized 

TABLE II 

Coefficients of Second Derivative Approximations for Various Initial Conditions 

D o Schemes with f l =  c = 0  

e -~2 ~ = 0 . 2 2 8 5 6 5 7 6 0 9 ,  a =  1.0139538409 
e -2~2 x = 0 .2028150072 ,  a = 1.0598135170 

e -3~2 ~ = 0 . 1 9 5 2 7 7 0 7 6 5 ,  a = 1 . 0 7 1 6 6 9 5 0 7 2  

e -4'°2 ~ = 0 . 1 9 1 7 1 5 1 9 1 6 ,  a = 1 . 0 7 7 0 0 7 6 3 1 3  

e -5~2 • = 0 .1896428309 ,  a = 1.0800332355 

e -6~2 ~ = 0 . 1 8 8 2 8 7 7 2 0 1 7 ,  a = 1 . 0 8 1 9 7 9 2 7 8 3  

e -7~2 ~ = 0 . 1 8 7 3 3 2 5 5 6 3 2 ,  a = 1 . 0 8 3 3 3 5 4 2 7 5  

D0 Schemes  wi th  fl = 0 

b = 0 .4431776810 

b = 0 . 3 4 5 8 1 6 4 9 7 4  

b = 0 . 3 1 8 8 8 4 6 4 5 8  

b = 0 . 3 0 6 4 2 2 7 5 1 9  

b = 0 . 2 9 9 2 5 2 4 2 6 3 3  

b = 0 .29459616204 

b = 0 .29132968512 

e -~2 ~ = 0 . 3 1 2 5 1 7 6 0 7 4 .  

e - z ~ :  x = 0 . 2 7 0 2 4 8 8 6 0 9  
e -3w2 R =  0 .2580699154  

e -4~2 ~ = 0 . 2 5 2 3 8 9 4 6 0 6 .  

e -5~2 ~ = 0 . 2 4 9 1 0 6 2 5 8 4 .  
e -6~2 ~ = 0 . 2 4 6 9 6 7 7 3 9 0 .  

e -7~2 ~ = 0 . 2 4 5 4 6 4 2 3 0 5 .  

a = 0 . 7 7 0 1 3 5 1 9 9 9 ,  b = 0 . 9 4 6 9 5 7 7 4 1 3 ,  

a = 0 . 8 8 6 3 5 2 5 5 8 4 ,  b = 0 . 7 0 6 5 1 7 2 6 3 7 ,  

a = 0 . 9 1 7 0 3 2 2 7 3 9 ,  b = 0 . 6 4 2 5 3 3 0 9 7 9 ,  

a = 0 . 9 3 0 8 7 0 1 0 6 5 ,  b = 0 . 6 1 3 5 1 5 3 1 1 0 ,  

a = 0 . 9 3 8 7 2 5 6 2 3 2 ,  b = 0 . 5 9 6 9 8 6 3 5 8 5 9 ,  

a = 0 .9437849227,  b = 0 . 5 8 6 3 1 6 6 3 4 7 ,  

a = 0 . 9 4 7 3 1 4 4 2 0 9 ,  b = 0 . 5 7 8 8 6 0 9 5 7 1 ,  

do General schemes 

c = - 0 . 0 9 2 0 5 7 7 2 6 5  

c = - 0 . 0 5 2 3 7 2 1 0 0 2  

c = - 0 . 0 4 3 4 2 5 5 4 0 9  

c = - 0 . 0 3 9 6 0 6 4 9 6 3  

c = - 0 . 0 3 7 4 9 9 4 6 4 9  

c = - 0 . 0 3 6 1 6 6 0 3 9 7  

c = - 0 . 0 3 5 2 4 6 9 1 7 1  

e -w: ~ = 0 . 5 0 2 4 7 5 0 5 7 7 ,  f l = 0 . 0 5 5 4 4 4 0 6 6 6 ,  a = 0 . 2 1 5 0 5 3 6 4 3 5 ,  b = 1 . 7 2 4 6 5 2 3 1 3 6 ,  

e -z~2 ~ = 0 . 5 0 4 1 5 8 2 0 7 4 ,  f l = 0 . 0 5 2 7 5 8 5 3 5 6 ,  a = 0 . 2 1 2 0 4 6 5 7 1 3 ,  b = 1 . 7 4 8 8 4 0 9 9 4 2 ,  

e -3~2 ~ = 0 . 5 0 5 3 9 8 6 3 6 8 ,  f l = 0 . 0 5 1 2 4 4 4 4 5 0 2 ,  a = 0 . 2 1 1 2 2 5 6 1 0 2 ,  b = 1 . 7 6 0 9 5 7 9 0 3 7 ,  

e -4w2 ~ = 0 . 5 0 6 1 0 0 9 8 9 8 ,  f l = 0 . 0 5 0 4 7 5 6 8 6 2 ,  a = 0 . 2 1 1 0 2 6 3 7 8 2 ,  b = 1 . 7 6 6 7 8 6 7 7 6 7 ,  

e -5~2 ~ = 0 . 5 0 6 5 4 3 5 8 1 7 ,  f l = 0 . 0 5 0 0 1 7 0 8 9 4 ,  a = 0 . 2 1 0 9 7 8 3 6 3 4 3 ,  b = 1 . 7 7 0 1 6 5 2 3 5 8 ,  

e - 6 ~  ~ = 0 . 5 0 6 8 4 6 5 8 1 5 ,  f l = 0 . 0 4 9 7 1 3 3 5 3 5 ,  a = 0 . 2 1 0 9 7 6 1 5 5 0 ,  b = 1 . 7 7 2 3 6 2 9 9 2 4 ,  

e - 7 ~  ~ = 0 . 5 0 7 0 6 6 6 5 7 9 ,  f l = 0 . 0 4 9 4 9 7 5 8 5 2 ,  a = 0 . 2 1 0 9 8 9 0 7 9 4 ,  b = 1 . 7 7 3 9 0 5 1 2 9 3 ,  

c = 0 .1761322914 

c = 0 .1529459205 

c = 0.1411026601 

c = 0 . 1 3 5 3 4 0 1 9 7 3  

c =  0.1319777431 

c = 0 .1297807226 

c = 0 . 1 2 8 2 3 4 2 7 7 6  



FINITE D I F F E R E N C E  SCHEMES 275 

10 
9 
B 
? 
6 

3 S 
4 
3 
2 
1 
0 

0 

7---_2- b e / . . -  
-___ f , " ; -  
: - : - : :  ,~ - -  ' U  f:" 

i , I , I 

2 3 

Wavenurnber--to 

xlO -4 
1.5 

1.0 

r 

o.s/! 

0.0 - -  

I I I 

:.z: 
. . . .  d 

t 2 3 

Wavenumber-m 

FIG. 5. Symbol (left) and absolute value of error (right) for d2/dx 2. 
t~ 0 = e-2°'2: (a) sixth-order tridiagonal scheme (fl = c = 0); (b) second-order 
optimized tridiagonal scheme ( f l = c = 0 ) ;  (c) eight-order tridiagonal 
scheme ( f l=  0); (d) second-order optimized tridiagonal scheme ( f l=0) ;  
(e) spectral-like pentadiagonal; (f) optimized pentadiagonal; (g) exact 
symbol. Schemes were optimized for t~ 0 = e-2(02. 

with the spectral-like scheme bears very little resemblance 
to the exact solution. 

6.1.2. Approximation of the Second Derivative 

The coefficients of compact schemes for various initial 
- -  o t t o  2 conditions having a Fourier transform of the form e can 

be found in Table II. 
Figure 5 plots absolute value of the symbol of the second 

derivative and the weighted error, for 0~ = 2. The parameters 
of the optimized schemes can be found in Table II. The 
coefficients of the other schemes were taken from [7] .  
Scheme (a) is given by 

2 12 b =  a = I-T, fl = 0, a - 11, 1~, c = 0. (6.14) 

The coefficients of scheme (c) are 
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(a) Pentadlagonal  scheme optnmzed for uo=e , (b) spectral-hke 
pentadiagonal  scheme; (c) exact solution. 
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FIG. 7. Long-time integration for u . =  uxx, a = 0.8. Initial solution 
on the left figure was d 0 -  e-C°2; on the right figure it was do =e-4(02: 
(a) Pentadiagonal scheme optimized for ~0=e-2~°2; (b) Spectral-like 
pentadiagonal scheme; (c) exact solution. 

The coefficients of the spectral-like pentadiagonal scheme 
(e) are 

= 0.50209266, fl = 0.05669169, a = 0 .21564935 ,  

b = 1 .723322,  c = 0 .1765973 .  (6 .16)  

It can be seen that the error in the spectral-like schemes 
is significantly larger than in the optimized ones. It is 
interesting to note that, again, for this specific data the 
L 2 e r r o r  norm of the spectral-like scheme is about an order 
of magnitude larger than the non-optimized tridiagonal 
scheme. This phenomenon suggests that the resolution 
efficiency is a poor estimate for discretizations evaluation. 
Computing the error norms reveals that the error in the 
optimized tridiagonal scheme is about seven times smaller 
than in the non-optimized scheme, whereas the error in the 
optimized pentadiagonal scheme is 70 times smaller than 
the spectral-like scheme, for this given data. 

The efficiency of the pentadiagonal schemes was com- 
pared by integrating the wave equation: 

~2 U ~2 U 

0 t  2 aX 2" 
(6 .17)  
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FIG. 8. Long-time integration for u.  = Uxx + Uyy, a = 0.8 using p2enta- 
diagonal schemes. Initial solution on the left figure was a0 = e - ( ~  +5~.;) 
rotated at an angle of  n/4. This data was approximated by unrotated 

2 2 . . 

gaussian e - (3~°~ + 2~:): ( a ) optirmzed pentadxagonal scheme; (b) Spectral- 
like pentadiagonal; (c) exact solution. 
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Th i s  e q u a t i o n  was  p u t  in a sys tem form:  

u 1 u 

Th i s  f o r m  o f  d i s c r e t i z a t i on  o f  the  w a v e  e q u a t i o n  was  

successful ly app l i ed  in [ 4 ]  for p r o b l e m s  in elast ici ty.  This  

sys tem was  so lved  u s ing  exac t  i n t eg ra t i on  on  a 128-point  

g r id  a n d  the  resul ts  a re  g iven  in Figs.  6 -7  d e m o n s t r a t i n g  the  

i m p r o v e d  accu racy  o f  t he  o p t i m i z e d  scheme  a n d  its robus t -  

ness,  respect ively.  F i g u r e  6 d e m o n s t r a t e s  tha t  t he  o p t i m i z e d  

s c h e m e  can  be  used  for  i n t e g r a t i o n  t ime  50 t imes ,  o r  more ,  

l o n g e r  t h a n  the  spec t ra l - l ike  scheme.  In  Fig.  7 the  scheme  

robus tne s s  is c lear ly  s h o w n  for  ini t ia l  d a t a  s m o o t h e r  o r  

m o r e  o sc i l l a t o ry  t h a n  the  d a t a  for  wh ich  the  s c h e m e  was  

des igned.  I n  b o t h  cases, by  the  t ime  a s ignif icant  e r r o r  

occurs  in the  so lu t ion  d i sc re t i zed  wi th  the  o p t i m i z e d  

scheme,  the  so lu t ion  c o r r e s p o n d i n g  to the  spec t ra l - l ike  

s cheme  to t a l l y  differs f r o m  the  exac t  so lu t ion .  

The  in i t ia l  so lu t ion  and  its a p p r o x i m a t i o n ,  for  the t w o -  

d i m e n s i o n a l  p r o b l e m  in Fig. 8 were  o b t a i n e d  s imi la r ly  to  

those  o f  the  e x a m p l e  in Fig. 4. W h i l e  the  so lu t ion  i n t eg ra t ed  

wi th  the  o p t i m i z e d  scheme  c lose ly  a p p r o x i m a t e s  the  exac t  

so lu t ion ,  i t  is ha rd  to see tha t  the  s o l u t i o n  c o r r e s p o n d i n g  to 

the  spec t ra l - l ike  s cheme  i n d e e d  a p p r o x i m a t e s  the  s a m e  

p rob l em.  

TABLE III 

Coefficients of Mid-Cell Approximation of the First Derivative for Various Initial Conditions 

t~ 0 Schemes with fl = c = 0 

d0 

e - J  ~=0.1824466564 
e - 2 J  ~=0.1621215357 
e -3~2 ~= 0.1560892225 
e -4~2 ~=0.1532174394 
e -5~2 ~=0.1515399131 
e -6~2 ~=0.1504402935 
e -7~2 ~= 0.1496639344 

a=0.9847348088, b=0.3801585039 
a=1.0026558711 b=0.3215872003 
a = 1.0076143702 b = 0.3045640747 
a = 1.0099120548 b = 0.2965228240 
a = 1.0112348225 b = 0.2918450036 
a =  1.0120939889 b=0.2887865980 
a =  1.0126967653 b=0.2866311035 

Schemes with f l= 0 

d0 

e -~2 ~=0.2803531992, 
e -2~2 ~=0.2421691108, 
e -3~2 ~= 0.2311768224, 
e -4~2 ~= 0.2260281312, 
e -5~2 ~=0.2230456380, 
e -6~2 R= 0.2211004185, 
e -7~2 ~=0.2197316282, 

a=0.8656018611. 
a=0.9108711860. 
a=0.9233491904. 
a=0.9290969691. 
a=0.9323967450. 
a=0.9345368034. 
a=0.9360368674. 

b=0.7202754832, c=-0.0251709460 
b=0.5897758895, c=-0.0163088538 
b=0.5531540626, c=-0.0141496081 
b=0.5361564844, c=-0.0131971911 
b=0.5263571378, c=-0.0126626068 
b=0.5199847302, c=-0.0123206966 
b=0.5155096846 c=  -0.0120832956 

General schemes 

e -~2 ~=0.3392424034, fl =0.0126851467, 
e -2~2 ~=0.3364203680, fl=0.0159838314, 
e -3~2 ~=0.3359766282, fl=0.0164557610, 
e -4~2 ~=0.3358345755, fl=0.0166014190, 
e -5~2 ~=0.33577201042, fl=0.01666433833, 
e -6~2 ~=0.33573907328, fl=0.01669706335, 
e - T J  ~=0.33571963682, fl=1.67162152050, 

a = 0.7880308119, b = 0.8956208871, 
a=0.7894607720, b=0.8790559502, 
a=0.7895453413, b=0.8768367139, 
a=0.78955615727, b=0.87616875736, 
a=0.78955722003, b=0.87588406207, 
a=0.78955658369, b=0.87573722427, 
a=0.78955572985, b=0.87565178238, 

d0 Schemes with fl = 0, designed to approximate d 2 / d x  2 

c=0.0202034010 
c=  0.0362916767 
c = 0.0384827231 
c=  0.03914707436 
c = 0.03943141540 
c = 0.03957846531 
c = 0.03966419181 

e -~2 ~=0.2949304593, a=0.8473898079, b=0.7718938474 
e -2~2 ~=0.2482825125, a=0.9037600128, b=0.6104318128 
e -3~2 ~=0.2349387889, a=0.9190859222, b=0.5656763757 
e -4~2 ~=0.2287385754, a=0.9260661646, b=0.5451127700 
e -5~2 ~=0.2251628777, a=0.9300484196, b=0.5333228985 
e -6~ ~=0.2228371850, a=0.9326209622, b=0.5256822919 
e -7w2 ~=0.2212037269, a=0.9344193325, b=0.52032910793 

c = -0.0294227367 
c=  -0.0176268008 
c =-0.0148847202 
c=-0.0137017838 
c =-0.0130455627 
c=-0.0126288841 
c = -0.0123409866 
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FIG. 9. Symbol for mid-cell discretizations of d/dx, a0=e-2'°2: 
(a) sixth-order tridiagonal scheme (fl = c = 0); (b) second-order optimized 
tridiagonal scheme (fl = c = 0); (c) eight-order tridiagonal scheme (fl = 0); 
(d) second-order optimized tridiagonal scheme (fl=0); (e) tenth-order 
pentadiagonal; (f) optimized pentadiagonal; (g) exact symbol. Schemes 
were optimized for d 0 = e -2'°2. 

6.1.3. Mid-Cel l  Approximation o f  the First Derivative 

Table  I I I  lists the coefficients of  schemes designed for 
var ious  ini t ia l  data.  The  coefficients of the schemes taken  
from [ 7 ]  are  listed below. Scheme (a) is given by 

9 
= ~ ,  fl = O, a = 3(3 - 2a),  

b = ~ ( 2 2 ~ -  1), c = O .  
(6.19) 

The coefficients of  scheme (c) are  

75  5 - -  3 5 4 ,  f l = O ~  a =  3 7 9 5 0 -  3 9 7 2 5 a  
3 1 3 6 8  

t 6 5 1 1 5 ~  - 3 3 5 0  2 5 6 6 9 ~  - 6 1 1 4  
o - -  2 0 9 1 2  , c - -  6 2 7 3 6  

(6.20) 

The coefficients of  the t en th -o rde r  pen t ad i agona l  scheme (f) 

are 

9 6 8 5 0  9 6 7 5  - 6 8 3 4 2 5  

2 8 8 5 2 9 '  ~ 
- -  U = ~ ,  

5 7 7 0 5 8 '  

b 5 0 5 1 7 5  6 9 0 4 9  
- -  5 7 7 0 5 8 '  e - -  1 1 7 3 1 1 7 4 "  

(6.21) 
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FIG. 10. Long-time integration 
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for u, = Uxx, d O = e -2w2, o" = 0.8: 
(a) tridiagonal mid-cell discretization scheme of d/dx, optimized to 
approximate d2/dx 2, when ~0=e-~°2; (b) non-optimized tridiagonal 
scheme; (c) exact solution. 
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FIG. 11. Real and imaginary parts of approximations to e zh"°), where 
Lh(to) is the symbol of the tridiagonal scheme for d/dx, optimized for d0 = 
e -z~°2 and a=0.8: (a) five-stage scheme optimized for the same a; 
(b) fourth-order Runge-Kutta; (c) exact time integration. 

The s t anda rd  c o m p a c t  schemes give very g o o d  resolut ion 
in this form (see Fig. 9); thus, the improvemen t  in t roduced  
by  the op t imized  schemes is smaller. Opt imiz ing  the tri- 
d iagona l  scheme yields a 6.5 t imes smaller  e r ror  n o r m  while 
opt imiz ing  the pe n t a d i a gona l  scheme yields a 2.5 times 
smaller  norm.  In this case, the e r ror  n o r m  of  the opt imized  
t r id iagonal  scheme is very close to that  of  the non-op t imized  
pen tad i agona l  scheme. 

An interest ing op t i on  suggested by this a p p r o a c h  was to 
opt imize the d/dx o p e r a t o r  in o rder  to ob ta in  the best 
a pp rox ima t ion  for d2/dx 2, for given init ial  values. This has 
been done  for the t r id iagona l  scheme which was used to 
integrate Eq. (6.17). I t  was compared ,  in Fig. 10, to the 
t r id iagonal  scheme f rom [ 7 ] ,  where bo th  are used to 
app rox ima te  the second  derivat ive in solving the one- 
d imens iona l  wawe equa t ion  in the system form (6.18) on 
a 128-point grid. Again ,  the op t imized  scheme gives 
significantly bet ter  app rox ima t ion .  

6.2. Approximate  Time  Integration 

The cons t ra ined  min imiza t ion  (4.3)-(4.5) was solved by 
requir ing tha t  the so lu t ion  will touch the s tabi l i ty  cons t ra in t  
at  one po in t  while ma in ta in ing  global  s tabi l i ty  and  mini- 
mizing the functional.  The  po in t  which gives the least  er ror  
no rm was found by  exhaust ive search. This s t ra ight forward  
a p p r o a c h  yielded the local  min ima  repor ted  in this paper .  

TABLE IV 

Coefficients of Time Integration Scheme 

Third-order schemes designed for a = 0.9 
do having ao = 1, a I = 1, a 2 = 1 

e -2w2 a3=0.166281, a 4 = 0.0397196, a5 = 0.0076705 
e -3~  a3=0.166407, a 4 =0.0409525, a5=0.0074510 
e - 4 J  a3 =0.1664488, a 4 =0.04111513, a5 =0.00739737 
e -5~  a3=0.1664805, a 4 =0.04121264, a5=0.00736302 
e -6~2 a 3 =0.1665028, a 4 =0.04128218, a5 =0.00733301 
e - 7 J  a3=0.1665207, a4 =0.04133150, as=0.00731074 
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FIG.  12. Integrat ion of  u ,  = u x, space 
derivative is computed using the tridiagonal compact  scheme optimized for 
the same initial data and a: (a) five-stage scheme optimized for this scheme 
and CFL; (b) fourth-order  Runge-Kut ta ;  (c) exact time integration. 

Somewhat better integration schemes might be achieved by 
using more advanced optimization techniques [ 8 ]. 

According to the general approach outlined in Section 5, 
one should choose an integration scheme which yields a 
truncation error of similar magnitude in time and space. 
Since the stability region for several fifth-order six-stage 
explicit Runge-Kutta schemes intersects the imaginary axis 
only in a small neighborhood of the origin [ 5, 6 ], disabling 
time marching with a large CFL, the optimized scheme was 
compared with the four-stage fourth-order Runge-Kutta. 
We preferred this five-stage scheme, which has an error 
norm about five times larger than the space discretization, 
to the seventh-order scheme, which yields an error norm 
about I1 times smaller than the space discretization, 
because of its lower computational cost. 

The analysis performed in Section 2 suggests that the 
integration operator should be optimized with respect to 
the spatial discrete operator employed, i.e., to minimize 
IIP(Lh(coh) A t ) -  e Lh(c°h) "J/IlL2. In the following examples L h 
is the tridiagonal approximation for d/dx, when the initial 
data is e -2'°2 and a = 0.8. Table IV contains the coefficients 
of integration scheme for various initial data, when L h is the 
tridiagonal scheme optimized for the same initial data and 
a=0.8 .  

Figure 11 plots the real and imaginary parts of e Lh('°h) ~t 
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FIG.  13. Integrat ion of  u t  = U x ,  a = 0.8. Left: u 0 = e ; right: ~0 = 
e-4°~2: (a) five-stage scheme optimized for this scheme and CFL; (b) fourth- 
order Runge-Kutta; (c) exact time integration. 
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FIG. 14. Integration of u, = u x + 0.5(1 + 0.6 sin(2~zy)) uy  a = 0.8 
2 2 ' 

using tridiagonal schemes. Initial solution was t~ 0 = e -(°'~+5~2) rotated at 
an angle of  n/4. This data was  approximated by unrotated gaussian 
e-(3J,+2~°~): (a) optimized tridiagonal scheme and optimized marching 
scheme; (b) tridiagonal scheme integrated with fourth-order Runge-Kutta; 
(c) a fine grid solution (practically exact). 

versus the four-stage fourth-order Runge-Kutta and the 
optimized scheme. The norm of the imaginary part of the 
error was reduced by a factor of 31 while its real part was 
reduced by a factor of merely 2.3. 

Figures 12-13 shows the inegration of the advection 
equation with those schemes on a 128-point grid, 
demonstrating the superior efficiency and robustness of the 
proposed schemes. In Figure 12 one can see that the 
optimized scheme can be used for at least a four times longer 
integration time than the Runge-Kutta scheme applied to 
the tridiagonal scheme from [7]. The computed error 
norms suggest that the time marching error is dominant in 
all examples. 

The two-dimensional example in Fig. 14 summarizes the 
approach suggested in this work. It compares the optimized 
tridiagonal scheme combined with the appropriate integra- 
tion formula, to a fourth-order Runge-Kutta applied to a 
non-optimized tridiagonal discretization. Although the 
analysis in Section 2 applies only to constant coefficient 
problems, this example shows that it holds, heuristically, to 
variable coefficient equations, as well. The initial data for 
this problem was obtained in a similar manner to that in 
Fig. 4. However, instead of comparing the solutions com- 
puted on the 128 x 128 grid to the exact solution, they are 
compared to the solution on a 256 x 256 grid which was 
integrated with the optimized scheme designed for the 
narrowest computed Gaussian (0~ -- 7). The initial data for 
the finer grid was obtained by bilinear interpolation from 
the coarser grid. It can be seen that the optimized scheme 
yields a significantly more accurate solution. 

7. CONCLUSION 

A simple and general approach for the design of a finite 
difference approximation of derivatives and integration for- 
mulas was introduced. It is based on the observation that 
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while formal accuracy of a discrete approximation describes 
the error in the smoothest components  realizable on a grid 
and predicts the global error reduction as the mesh is 
refined, it is inadequate to capture the error on a given finite 
grid with arbitrary initial data. Therefore, although 
asymptotically, higher order schemes are superior to lower 
order ones, on finite computat ional  grids they might not be. 
This observation led to deriving improved error estimates 
on the L 2 norm of the global error, when the initial data  and 
grid resolution are given. Thus, the relative amplitude of the 
physical frequencies representable on the grid can be taken 
into account. This property, as well as the fact that the error 
estimate separately bounds the spatial and temporal errors, 
enabled us to devise a general approach for designing finite 
difference schemes with optimal performance for the given 
grid and data. 

These error bounds were used to design compact  finite 
difference schemes for derivative evaluation. The resulting 
schemes combined adaptivity to the specific initial data by 
the nature of their design and robustness to perturbations 
in the initial data. The improved resolution had been 
demonstrated for several problems and was compared to 
previously known similar schemes, schemes with spectral- 
like resolution. It was shown that the optimized schemes 
can be efficiently used for an integration time that was an 
order of magnitude larger than the spectral-like scheme with 
similar computational  complexity. 

A similar approach was used to design improved and 
robust integration schemes, taking into account the spatial 
discretization, as well as the initial data and grid resolution. 

The robustness of the resulting schemes to perturbation 
in the initial data enabled us to extend them to more general 
differential operators in a simple straightforward way by 
giving up on some of the obtainable accuracy. Other exten- 
sions which do not compromise on efficiency should be 

investigated and trade-off between accuracy, robustness, 
and ease of use, for these generalizations should be better 
understood. This robustness enables us to obtain improved 
resolution even when only approximate knowledge of the 
energy distribution is available, e.g., a probability density 
function of the wavenumber amplitude (as in turbulence). 

The approach suggested in this paper  for optimizing 
discrete operators can be similarly applied to higher 
derivatives. Its applicability to more general and complex 
operators should be further investigated. The use of these 
ideas to design boundary conditions will be presented 
elsewhere. 
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